

Fuel Cell Systems

Sensors
Air Management
Benchmarking
Modeling

Patrick Davis

Targets and Status

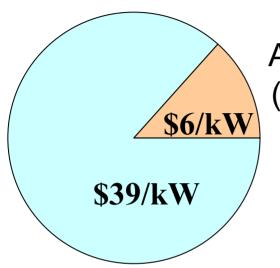
50 kWe (net) Integrated Fuel Cell Power System

Characteristics	Units	2003 status	2005	2010	
Operating on Tier 2 gasoline containing 30 ppm sulfur, average					
Power density	W/L	140	250	325	
Cost	\$/kW	325	125	45	
Durability	Hours	1000	2000	5000	
Operating on direct hydrogen					
Power density (w/o H2 stor)	W/L	400	500	650	
Cost (including H2 storage)	\$/kW	275	125	45	
Durability	Hours	1000	2000	5000	

ProjectsFuel Cell Power Systems Analysis

Fuel Cell Systems Analysis

- ANL
- Fuel Cell Vehicle Systems Analysis
- NREL
- Cost Analyses of Fuel Cell Stacks/ Systems
- TIAX
- DFMA Cost Estimates of Fuel Cell/ Reformer Systems at Low, Medium, & High Production Rates
- Directed Technologies, Inc.


 Assessment of Fuel Cell Auxiliary Power Systems for On Road Transportation Applications

TIAX

 Precious Metal Availability & Cost Analysis for PEMFC Commercialization TIAX

Barriers Air Management Subsystem

Air Management (50-kW System)

Fuel Cell Power System

\$45/kW

NEEDS

- Minimize parasitic power consumption
- Reduce weight
- Improve efficiency
- Integrate with fuel cell and fuel processor
- Reduce cost

Energy Efficiency and Renewable Energy Status and Proposed Targets

Compressor/Expander for Transportation Fuel Cell System

Characteristics	Units	2003 status	2005	2010
50-kW Unit				
Efficiency at Full Flow	%	<70 (C), <80 (E)	80	80
Volume	L	10-12	8-11	8-11
Turndown Ratio		5	10-15	10-15
Cost	\$	600	400	300
80-kW Unit				
Efficiency at Full Flow	%	-	-	80
Volume	L	-	-	15
Turndown Ratio		_	_	15
Cost	\$	-	_	400

 Turbocompressor for PEM Fuel Honeywell Cells

Hybrid Compressor/Expander TIAX

Module

 Motor Blower Technology for Fuel UTC Cell Automotive Power Systems

High-Efficiency, Integrated Mechanology,
 Compressor/Expander Based on LLC

Torroidal Intersecting Vane

Discussion Points

- Develop compressor/expander units for direct hydrogen systems.
- Need exists for compressor/ expander motor unit for fuel cells larger than 50kW.
- Will larger compressor/expander units be scalable from current work?
- How large a compressor/ expander unit will ultimately be needed?

Sensor Types

- CO
- H₂ in Fuel Processor
 Output
- H₂ in Ambient Air
- Sulfur Compounds (H₂S, SO₂, organic sulfur)

- Flow Rate of Fuel Processor Output
- Ammonia
- Temperature
- Relative Humidity for Cathode and Anode Gas Streams
- O₂ in Fuel Processor and at Cathode Exit
- Differential Pressure in Fuel Cell Stack

Targets and Status

Sensors for Automotive Fuel Cell Systems

Sensor	Op. Temp.	Response Time	Accuracy
CO:			
1-100 ppm reformate pre-stack sensor	<150 °C	0.1-1 sec	1-10% full scale (fs)
100-1000 ppm CO	250 °C	0.1-1 sec	1-10% fs
0.1-2% CO sensor	250-800 °C	0.1-1 sec	1-10% fs
H ₂ in fuel processor output	70-150 °C	0.1-1 sec for 90% response to step change	1-10% fs
H ₂ in ambient air	-30-80 °C	Under 1 sec	5%
Sulfur compounds	Up to 400 °C	<1 min @ 0.05 ppm	N/A

Targets and Status

Sensors for Hydrogen and Fuel Cell Systems

Sensor	Op. Temp.	Response Time	Accuracy
CO:			
1-100 ppm reformate	<150 °C	0.1-1 sec	1-10% full
100-1000 ppm CO	250 °C	0.1-2 sec	scale (fs)
0.1-2% CO sensor	250-800 °C	0.1-3 sec	1-10% fs
			1-10% fs
H2 in processor output	70-250 °C	0.1-3 sec for 95% response to step change	1-10% fs
H2 in ambient air	-30-80 °C	Under 1 sec	5%

Sensor Requirements

- Must perform within required ambient and process conditions
- Fast response time
- Acceptable accuracy
- Must conform to size, weight, and cost constraints of automotive applications
- Acceptable lifetime (durability)
- Must measure properties within the required range
- Low Cost

Sensor Projects

- Carbon Monoxide Sensors for Reformate-Powered Fuel Cells LANL
- Electrochemical Sensors for PEM Fuel Cell Vehicles LLNL
- Interfacial Stability of Thin Film H2 Sensors NREL
- Sensors for Automotive Fuel Cell Systems UTC Fuel Cells
- Micro-Machined Thin Film H2 Gas Sensors ATMI
- Sensor Development for PEM Fuel Cell Systems Honeywell
- Gallium Nitride Integrated Gas/ Temperature Sensors for Fuel Cell Systems Monitoring for Hydrogen & Carbon Monoxide – Peterson Ridge LLC
- Robust Fiber-Optic Temperature Sensor for Fuel Cell Monitoring -ORNL

Discussion Points

- Program focus on component development
- Continued importance of modeling
- Benchmarking will be used to measure progress
- Air management & Sensors will continue to be emphasized

